Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy Materials and Solar Cells
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A new anodic buffer layer material for non-mixed planar heterojunction chloroboron subphthalocyanine organic photovoltaic achieving 96% internal quantum efficiency

Authors: Takeaki Sakurai; Takeaki Sakurai; Chin-Ti Chen; Chi-Feng Lin; Jiun-Haw Lee; Tien-Lung Chiu; Masato Kubota; +6 Authors

A new anodic buffer layer material for non-mixed planar heterojunction chloroboron subphthalocyanine organic photovoltaic achieving 96% internal quantum efficiency

Abstract

Abstract Nonmixed planar heterojunction (PHJ) small-molecule organic photovoltaics (OPVs) with 96% internal quantum efficiency (at 595 nm) and 4.77% power conversion efficiency (PCE) have been demonstrated. In addition to boron subphthalocyanine chloride (SubPc) and C60 as electron donor and acceptor materials, respectively, PHJ OPVs contain an ultrathin (2 nm) buffer layer of bis-(naphthylphenylaminophenyl)fumaronitrile (NPAFN) between the indium tin oxide (ITO) anode and the donor layer (SubPc). Compared with copper phthalocyanine (CuPc) or α-naphthylphenylbiphenyl diamine (NPB) buffer layers, the NPAFN buffer layer blocks the exciton diffusion from the SubPc electron donor layer to the ITO anode more effectively and considerably improves the short circuit current (JSC) from 5.96 (without an NPAFN layer) to 7.70 mA/cm2 (with a 4-mm-thick NPAFN layer ). In addition, experimental results indicated that the NPAFN buffer layer reduces the crystallization, or stacking, of the SubPc electron donor, thereby limiting the reverse saturation current and elevating the open circuit voltage (VOC) from 1.01 (without an NPAFN layer) to 1.08 V (with a-2-nm thick NPAFN layer). However, series resistance (RS) of the OPV monotonically increases with increasing NPAFN layer thickness. The performance of the OPV is optimized when the NPAFN buffer layer thickness is 2 nm. Compared with a SubPc–C60 PHJ OPV without an NPAFN buffer layer, the PCE of a OPV with a buffer layer increases by 22% from 3.96% to 4.77%, with a concurrent increase in JSC (from 5.96 to 7.02 mA/cm2) and VOC (from 1.01 to 1.08 V). However, a decrease in RS (from 10.21 to 14.95 Ω cm2) and in fill factor (from 65% to 63%) is also observed.

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research