Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Flore (Florence Rese...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy Materials and Solar Cells
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sn-deficiency in the electrodeposited ternary CuxSnySz thin films by ECALE

Authors: CAPORALI, STEFANO; Tolstogouzov, Alexander; Teodoro, Orlando M. N. D.; INNOCENTI, MASSIMO; DI BENEDETTO, FRANCESCO; CINOTTI, SERENA; Picca, Rosaria Anna; +2 Authors

Sn-deficiency in the electrodeposited ternary CuxSnySz thin films by ECALE

Abstract

Abstract Ternary CuxSnySz thin films with different Cu/Sn atomic ratios and thicknesses have been electrochemically deposited on the (111) face of a silver single crystal. The surface morphology and chemical composition of these chalcogenides, which have attracted considerable worldwide interest as low cost high conversion efficiency photovoltaic devices, have been characterized by means of SEM, parallel angle resolved (PAR-XPS) and TOF-SIMS depth profiling in order to gain insight into the morphology and element distribution within the layer and their effect on the band gap. This study constitutes the first in-depth chemical study on CuxSnySz thin films, providing evidence of notable discrepancies between the expected and real composition, especially regarding the Cu/Sn ratio. The samples were found to be chemically homogeneous through the whole deposit even though strongly tin depleted regardless their thickness or deposition sequence. Finally, the literature band gap data were discussed on the basis of these findings.

Country
Italy
Keywords

Cu/Sn chalcogenides, Sustainability and the Environment, Cu/Sn chalcogenide, Optical and Magnetic Material, ECALE, PAR-XPS, Surfaces, Coatings and Films, Electrodeposition, TOF-SIMS, Electronic, CTS; Cu/Sn chalcogenides; ECALE; Electrodeposition; PAR-XPS; TOF-SIMS; Renewable Energy, Sustainability and the Environment; Electronic, Optical and Magnetic Materials; Surfaces, Coatings and Films, Renewable Energy, Optical and Magnetic Materials, CTS

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Top 10%
Top 10%
Green
bronze
Related to Research communities
Energy Research