Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ UNSWorksarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy Materials and Solar Cells
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Investigations on accelerated processes for the boron–oxygen defect in p-type Czochralski silicon

Authors: Nitin Nampalli; Malcolm Abbott; Phillip Hamer; Phillip Hamer; Catherine Chan; Stuart Wenham; Brett Hallam;

Investigations on accelerated processes for the boron–oxygen defect in p-type Czochralski silicon

Abstract

Abstract As new solar cell architectures are developed with superior surface passivation, the boron–oxygen defect becomes an increasingly significant limitation on device performance for p-type Czochralski silicon solar cells. This has led to research into methods of permanently deactivating the recombination activity associated with the defect and how these might be implemented in an industrial environment. While the ability to passivate this defect at temperatures below 500 K has been widely reported in the literature, recent results from the authors have demonstrated the ability to achieve near complete passivation of this defect at temperatures in excess of 600 K under high intensity illumination. This ability to passivate the defect at higher temperatures than previously reported may be explained by an increase in the rate of defect passivation, or alternately, by an increase in the defect formation rate. This paper explores the dependence of defect passivation upon illumination intensity, temperature and the initial state of the defects. Evidence is presented to suggest that high intensity illumination does not significantly increase the rate of passivation, but rather greatly enhances the defect formation rate. Based upon this understanding it is demonstrated how a 10 s process under high intensity illumination may be used to completely eliminate the impact of the boron–oxygen defect on solar cell performance, with no requirement for prior defect formation.

Country
Australia
Related Organizations
Keywords

anzsrc-for: 4016 Materials Engineering, anzsrc-for: 51 Physical sciences, 530, 4016 Materials Engineering, anzsrc-for: 40 Engineering, anzsrc-for: 02 Physical Sciences, anzsrc-for: 34 Chemical sciences, anzsrc-for: 09 Engineering, anzsrc-for: 03 Chemical Sciences, 40 Engineering

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Top 10%
Top 10%
Green
Related to Research communities
Energy Research