Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy Materials and Solar Cells
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Toward cadmium-free spectral down-shifting converters for photovoltaic applications

Authors: Yaroslav Bobitski; Yaroslav Bobitski; Rostyslav Lesyuk; Ihor Tarnavchyk; Val Marinov; Erik K. Hobbie; Ahmed Elbaradei;

Toward cadmium-free spectral down-shifting converters for photovoltaic applications

Abstract

Abstract Spectrum down-shifting converters based on Cd-free Zn–Cu–In–S(ZCIS)/ZnS core/shell quantum dots are modeled and simulated for applications in photovoltaics using the Monte-Carlo approach. The set of physical characteristics required for the successful implementation of this type of material in spectral converters have been identified. The advantage of using ZCIS/ZnS quantum dots in such converters is highlighted through a comparison with the conventional CdSe/ZnS quantum dots. The simulation model has been evaluated experimentally using ZCIS/ZnS quantum dots dispersed in polydimethylsiloxane (PDMS) as a spectrally converting top layer. In addition to validating the utility and precision of the simulation, it is shown that the polymerization of polydimethylsiloxane does not significantly impede the photoluminescent quantum yield of the ZCIS/ZnS quantum dots.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
Related to Research communities
Energy Research