
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Defect engineering of ZnS thin films for photoelectrochemical water-splitting under visible light
Abstract Efficient hydrogen production from water by photocatalysis under sunlight requires a significant improvement in light-harvesting capability. Zinc sulfide is a promising, inexpensive hydrogen generation photocatalyst, but in its pure, bulk form it is only active under ultra-violet light. Here, we show clear evidence of photoelectrochemical activity of ZnS thin films under visible-light irradiation without any co-catalysts, achieved through defect engineering. Fabrication of nanostructured ZnS under controlled conditions introduces defects, and hence intermediate electronic states within the band gap, which allow significant absorption of light at energies below the band gap energy of pure, bulk ZnS. The measured band gap of the ZnS thin films is ~2.4 eV, while the photocurrent density exceeds 1.5 mA/cm2 under visible-light irradiation (λ≥435 nm). This is the first measurement of such high photocurrents for undoped ZnS under visible light.
- Queen's University Belfast United Kingdom
- UNSW Sydney Australia
/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energy, name=SDG 7 - Affordable and Clean Energy, 540, 530, SDG 7 - Affordable and Clean Energy
/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energy, name=SDG 7 - Affordable and Clean Energy, 540, 530, SDG 7 - Affordable and Clean Energy
