Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy Materials and Solar Cells
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Efficiency increase of crystalline silicon solar cells with nanoimprinted rear side gratings for enhanced light trapping

Authors: Hubert Hauser; Nico Tucher; Benedikt Bläsi; Jan Benick; Johannes Eisenlohr; Jan Christoph Goldschmidt; Martin Graf; +1 Authors

Efficiency increase of crystalline silicon solar cells with nanoimprinted rear side gratings for enhanced light trapping

Abstract

Abstract We demonstrate diffractive rear side gratings to enhance the near infrared light trapping and thus the quantum efficiency of wafer based crystalline silicon solar cells. Binary crossed gratings with a period of 1 µm, produced via nanoimprint lithography and plasma etching, are electrically decoupled from the solar cell by a thin dielectric passivation layer, creating an electrically flat, but optically rough rear side. We fabricated solar cells with thicknesses of 250, 150 and 100 µm and demonstrate a short circuit current density gain due to the grating of 1.2, 1.6 and 1.8 mA/cm 2 for solar cells with planar front surface. For solar cells with pyramidally textured front surface the grating also leads to a small current density gain in the near infrared of approximately 0.3 mA/cm 2 according to EQE measurements, leading to the best cell's efficiency of 21.1%. By optical simulations we show the potential of the grating structure and identify losses in the fabricated solar cells.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%
Related to Research communities
Energy Research