
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Elucidating the evolution of the current-voltage characteristics of planar organometal halide perovskite solar cells to an S-shape at low temperature

Abstract The temperature dependence of initial transient current-voltage (I-V) characteristic of planar perovskite solar cell by one-step solution process is investigated. An S-shaped I-V characteristic emerges in response to low temperature and the photovoltaic parameters drop dramatically. This is mainly attributed to the increasing amount of negative charges accumulating in the TiO 2 /CH 3 NH 3 PbI 3 interface region and the reduced built-in field separating the photo-generated carriers in the absorber layer. The influence of negative charge accumulation can be represented by two extra diodes that are in series with a conventional solar cell circuit model at low temperature whereas it acts as a resistor with low resistivity above room temperature. These findings help to understand the charge transport mechanism in perovskite solar cells.
- Fudan University China (People's Republic of)
- Shanghai University China (People's Republic of)
- State Key Laboratory of Surface Physics China (People's Republic of)
- Shanghai University China (People's Republic of)
- Fudan University China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).21 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
