Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy Materials and Solar Cells
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Reducible fabrication cost for P3HT-based organic solar cells by using one-step synthesized novel fullerene derivative

Authors: Weigang Jiang; Ling Hong; Xinhua Ouyang; Wang Li; Ziyi Ge; Ruixiang Peng; Tao Lei; +2 Authors

Reducible fabrication cost for P3HT-based organic solar cells by using one-step synthesized novel fullerene derivative

Abstract

The cyclohexanone-containing fullerene mono-adduct, abbreviated as CHOC60, was efficiently prepared through single-step Diels-Alder reaction with 2-(trimethylsilyloxy)-l,3-butadiene and fullerenes. After reduction and esterification, CHOC60 was further converted into cyclohexyl acetate functional fullerene mono-adduct, named as CHAC60, which showed excellent solubility in common organic solvents. P3HT-based bulk heterojunction organic solar cells (OSCs) were fabricated through a typical structure of ITO/PEDOT:PSS/P3HT:(CHOC60 or CHAC60)/Ca/Al. The composite ratios of P3HT and the fullerene derivatives were modified such as 1:0.5, 1:1 and 1:1.5 (w/w). The devices fabricated using CHOC60 or CHAC60 as acceptors achieved the power conversion efficiencies (PCEs) of 2.97% and 3.15%, respectively, which exhibited comparative photovoltaic performances with commercial PC61BM. Moreover, CHOC60-based devices significantly reduced the manufacturing cost by the simplified synthesis of CHOC60 with high yield and low fullerene consumption. The non-aromatic side chain radical CHOC60 and CHAC60 provide a new idea for the design of fullerene derivative acceptors.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Top 10%
Related to Research communities
Energy Research