Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Solar Energy Materia...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Solar Energy Materials and Solar Cells
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy Materials and Solar Cells
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
https://dx.doi.org/10.60692/0m...
Other literature type . 2017
Data sources: Datacite
https://dx.doi.org/10.60692/j2...
Other literature type . 2017
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

CdS and Zn1−xSnxOy buffer layers for CIGS solar cells

CdS و Zn1-xSnxOy طبقات عازلة للخلايا الشمسية CIGS
Authors: Pedro M. P. Salomé; Jan Keller; Tobias Törndahl; Jennifer P. Teixeira; Nicoleta Nicoara; Rodrigo Ribeiro Andrade; Daniel G. Stroppa; +4 Authors

CdS and Zn1−xSnxOy buffer layers for CIGS solar cells

Abstract

Des cellules solaires à film mince à base de Cu(In,Ga)Se2 (CIGS), où seule la couche tampon est modifiée, ont été fabriquées et étudiées. Les effets de deux couches tampons différentes, CdS et ZnxSn1 −xOy (ZnSnO), sont comparés en utilisant plusieurs techniques de caractérisation. Nous avons comparé les deux dispositifs et observé que les cellules solaires à base de ZnSnO ont des valeurs similaires d'efficacité de conversion d'énergie par rapport aux cellules avec des couches tampons CdS. Les dispositifs à base de ZnSnO ont des valeurs plus élevées dans le courant de court-circuit (Jsc) qui compensent des valeurs plus faibles dans le facteur de remplissage (FF) et la tension en circuit ouvert (Voc) que les dispositifs à base de CdS. Les résultats de la microscopie à force de sonde de Kelvin (KPFM) indiquent que le CdS fournit des jonctions avec une photovoltaïque de surface (SPV) légèrement plus élevée que le ZnSnO, expliquant ainsi le potentiel Voc plus faible pour l'échantillon de ZnSnO. L'analyse met montre une couche de ZnSnO poly-cristallin et nous n'avons détecté aucune preuve forte de diffusion de Zn ou Sn dans le CIGS. À partir des mesures de photoluminescence, nous avons conclu que les deux échantillons sont affectés par des potentiels fluctuants, bien que cet effet soit plus élevé pour l'échantillon CdS.

Se fabricaron y estudiaron células solares de película delgada basadas en Cu(In,Ga)Se2 (CIGS), donde solo se cambia la capa amortiguadora. Los efectos de dos capas amortiguadoras diferentes, CdS y ZnxSn1−xOy (ZnSnO), se comparan utilizando varias técnicas de caracterización. Comparamos ambos dispositivos y observamos que las células solares basadas en ZnSnO tienen valores similares de eficiencia de conversión de energía en comparación con las células con capas amortiguadoras de CdS. Los dispositivos basados en ZnSnO tienen valores más altos en la corriente de cortocircuito (Jsc) que compensan los valores más bajos en el factor de llenado (FF) y la tensión de circuito abierto (Voc) que los dispositivos basados en CdS. Los resultados de la microscopía de fuerza de sonda Kelvin (KPFM) indican que el CdS proporciona uniones con un fotovoltaje de superficie (SPV) ligeramente más alto que el ZnSnO, lo que explica el menor potencial de Voc para la muestra de ZnSnO. El análisis TEM muestra una capa policristalina de ZnSnO y no hemos detectado ninguna evidencia fuerte de difusión de Zn o Sn en el CIGS. A partir de las mediciones de fotoluminiscencia, concluimos que ambas muestras están siendo afectadas por potenciales fluctuantes, aunque este efecto es mayor para la muestra de CdS.

Thin film solar cells based on Cu(In,Ga)Se2 (CIGS), where just the buffer layer is changed, were fabricated and studied. The effects of two different buffer layers, CdS and ZnxSn1−xOy (ZnSnO), are compared using several characterization techniques. We compared both devices and observe that the ZnSnO-based solar cells have similar values of power conversion efficiency as compared to the cells with CdS buffer layers. The ZnSnO-based devices have higher values in the short-circuit current (Jsc) that compensate for lower values in fill factor (FF) and open circuit voltage (Voc) than CdS based devices. Kelvin probe force microscopy (KPFM) results indicate that CdS provides junctions with slightly higher surface photovoltage (SPV) than ZnSnO, thus explaining the lower Voc potential for the ZnSnO sample. The TEM analysis shows a poly-crystalline ZnSnO layer and we have not detected any strong evidence of diffusion of Zn or Sn into the CIGS. From the photoluminescence measurements, we concluded that both samples are being affected by fluctuating potentials, although this effect is higher for the CdS sample.

تم تصنيع ودراسة الخلايا الشمسية ذات الأغشية الرقيقة القائمة على Cu(In،Ga) Se2 (CIGS)، حيث يتم تغيير الطبقة العازلة فقط. تتم مقارنة تأثيرات طبقتين عازلتين مختلفتين، CdS و ZnxSn1-xOy (ZnSnO)، باستخدام العديد من تقنيات التوصيف. قارنا كلا الجهازين ولاحظنا أن الخلايا الشمسية القائمة على ZnSnO لها قيم مماثلة لكفاءة تحويل الطاقة مقارنة بالخلايا ذات الطبقات العازلة CdS. تحتوي الأجهزة المستندة إلى ZnSnO على قيم أعلى في تيار الدائرة القصيرة (Jsc) التي تعوض عن القيم الأقل في عامل التعبئة (FF) وجهد الدائرة المفتوحة (Voc) من الأجهزة المستندة إلى CdS. تشير نتائج الفحص المجهري لقوة مسبار كلفن (KPFM) إلى أن CdS يوفر تقاطعات بجهد ضوئي سطحي أعلى قليلاً (SPV) من ZnSnO، مما يفسر انخفاض جهد Voc لعينة ZnSnO. يُظهر تحليل TEM طبقة ZnSnO متعددة البلورات ولم نكتشف أي دليل قوي على انتشار الزنك أو SN في CIGS. من قياسات اللمعان الضوئي، خلصنا إلى أن كلتا العينتين تتأثران بجهد التذبذب، على الرغم من أن هذا التأثير أعلى بالنسبة لعينة CdS.

Country
Portugal
Keywords

Surface photovoltage, Thin-Film Solar Cells, Materials Science, Formation and Properties of Nanocrystals and Nanostructures, Quantum mechanics, Layer (electronics), Atomic force microscopy, Engineering, FOS: Electrical engineering, electronic engineering, information engineering, Materials Chemistry, Buffer layers, Kelvin probe force microscope, Nanotechnology, Electrical and Electronic Engineering, Optoelectronics, Applications of Quantum Dots in Nanotechnology, Photoluminescence, Cu(In,Ga)Se2 (CIGS), Spectroscopy, Buffer (optical fiber), FOS: Nanotechnology, Physics, Solar cell, Voltage, Copper indium gallium selenide solar cells, Thin film solar cells, CdS, Materials science, Open-circuit voltage, Thin-Film Solar Cell Technology, Solar Cell Efficiency, Electrical engineering, Physical Sciences, Energy conversion efficiency, Zn1-xSnxOy

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    60
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
60
Top 1%
Top 10%
Top 1%
Green
hybrid