Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ UNSWorksarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy Materials and Solar Cells
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Selective emitter solar cell through simultaneous laser doping and grooving of silicon followed by self-aligned metal plating

Authors: Wang, S; Mai, L; Wenham, A; Hameiri, Z; Payne, D; Chan, C; Hallam, B; +5 Authors

Selective emitter solar cell through simultaneous laser doping and grooving of silicon followed by self-aligned metal plating

Abstract

Abstract Both buried contact solar cells (BCSC) and laser doped selective emitter (LDSE) solar cells have achieved considerable success in large-scale manufacturing. Both technologies are based on plated contacts. High metal aspect ratios achieved by BCSC allow low shading loss while the buried metal contacts in the grooves provide good contact adhesion strength. In comparison, although the LDSE cell achieves significantly higher efficiencies and is a much simpler approach for forming the selective emitter region and self-aligned metal plating, the metal adhesion strength falls well short of that achieved by the BCSC. Recent studies show that plated contacts based on the latter can be more durable than screen-printed contacts. This work introduces a new concept of laser doping with grooving to form narrow grooves with heavily doped walls in a simultaneous step, with the self-aligned metal contact subsequently formed by plating. This process capitalizes on the benefits of both BCSC and LDSE cells. The laser-doped grooves are only 3–5 µm wide and 10–15 µm deep; the very steep walls of these grooves remain exposed even after the subsequent deposition of the antireflection coating (ARC). This unique feature significantly reduces the formation of laser-induced defects since the stress due to the thermal expansion mismatch between the ARC and silicon is avoided. Furthermore, the exposed walls allow nucleation of the subsequent metal plating. This novel structure also benefits from greatly enhanced adhesion of the plated contact due to it being buried underneath the silicon surface in the same way as the BCSC. Cell efficiencies over 19% are achieved by using this technology on p -type Czochralski (Cz) wafers with a full area aluminum (Al) back surface field (BSF) rear contact. It is expected that much higher voltages and consequently higher efficiencies could be achieved if this technology is combined with a passivated rear approach.

Country
Australia
Related Organizations
Keywords

anzsrc-for: 51 Physical sciences, 4014 Manufacturing Engineering, 530, anzsrc-for: 40 Engineering, anzsrc-for: 02 Physical Sciences, anzsrc-for: 34 Chemical sciences, anzsrc-for: 4014 Manufacturing Engineering, anzsrc-for: 09 Engineering, anzsrc-for: 03 Chemical Sciences, 40 Engineering

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
Green