
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Spectrally resolved nonlinearity and temperature dependence of perovskite solar cells

Spectrally resolved nonlinearity and temperature dependence of perovskite solar cells
Abstract An accurate electrical device characterization of hybrid organic-inorganic halide perovskite solar cells (PSCs) is an important prerequisite for further improvement and industrial transfer of this promising photovoltaic technology. In this work, we study the nonlinearity of current versus irradiance as well as the temperature dependence of PSCs in a spectrally resolved manner by highly accurate differential external quantum efficiency (EQE) measurements. We investigate three different types of PSCs fabricated by different research groups. The nonlinearity of all samples is found to be spectrally invariant, which significantly simplifies spectral mismatch corrections. We demonstrate that misinterpretation of EQE measurements can result in a more than 10% relative error in efficiency measurements, if solar simulators are adjusted to photocurrents determined from differential EQEs. For obtaining an accurate integrated photocurrent from EQEs, we introduce a new, convenient approach that accounts for cell nonlinearities but avoids the time-consuming full analysis of spectrally resolved nonlinearity. Moreover, for the samples investigated here, it is shown that the differential EQE measured at 0.35 suns bias irradiance represents a reasonably good estimate of the actual EQE at 1 sun. Furthermore, we determine spectrally resolved temperature coefficients (TCs) and show how the band gap blue shift varies with perovskite absorber and temperature.
- École Polytechnique Fédérale de Lausanne EPFL Switzerland
- Katholieke Universiteit Leuven Belgium
- Fraunhofer Institute for Solar Energy Systems Germany
- Fraunhofer Society Germany
- University of Freiburg Germany
Measurement accuracy, Short-circuit current density, 530, Perovskite solar cell, Temperature dependence, Fotovoltaik, External quantum efficiency, Nonlinearity
Measurement accuracy, Short-circuit current density, 530, Perovskite solar cell, Temperature dependence, Fotovoltaik, External quantum efficiency, Nonlinearity
7 Research products, page 1 of 1
- 2016IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2014IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
- 2010IsAmongTopNSimilarDocuments
- 2010IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).17 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
