Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy Materials and Solar Cells
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Influence of selenium doping on the properties of Cu2Sn(SxSe1−x)3 thin-film solar cells fabricated by sputtering

Authors: Mingrui He; Jihun Kim; Dong-Seon Lee; Woo-Lim Jeong; Mahesh P. Suryawanshi; Jin Hyeok Kim; Junsung Jang; +2 Authors

Influence of selenium doping on the properties of Cu2Sn(SxSe1−x)3 thin-film solar cells fabricated by sputtering

Abstract

Abstract Cu2Sn(SxSe1−x)3 (CTSSe) (0 ≤ x ≤ 0.03) thin films are prepared using sputtered metal precursors. The influence of the quantity of selenium doped during an annealing process on the properties of CTSSe thin films and solar cells is investigated. The synthesized CTSSe thin films are grown in the monoclinic crystal structure with a densely packed morphology. The growth of the CTSSe thin films is successfully demonstrated by Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses. The band gap energy of the CTSSe thin films are extrapolated from the optical spectra of the band edge region to be 0.86 eV and 0.88 eV. A compositional analysis using X-ray fluorescence (XRF) spectroscopy shows a consistent increase in the selenium content with increase in the quantity of added selenium. This dependence is confirmed by changes in the crystallinity, composition, optical and electrical properties. CTSSe thin-film solar cells (TFSCs) were fabricated with a structure of Mo/CTSSe/CdS/i-ZnO/AZO/Al. The best efficiency of 2.49% was achieved for the fabricated CTSSe TFSC with a Voc of 190.8 mV, Jsc of 34.6 mA/cm2, and FF of 37%.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
Related to Research communities
Energy Research