
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Broadband antireflective coating stack based on mesoporous silica by acid-catalyzed sol-gel method for concentrated photovoltaic application

Abstract Silica multi-layer stacks have been designed with the aim to provide broadband antireflective (AR) properties for glass components in concentrated photovoltaic (CPV) application. Silica porous coatings were grown by combining acid-catalyzed sol-gel route and evaporation induced self-assembly (EISA) method with four types of organic/inorganic systems. Sols were prepared using tetraethylorthosilicate (TEOS) as inorganic precursor assembled with two di-block copolymers, one tri-block copolymer and one cationic surfactant as organic templates. Optical properties were characterized by ellipsometry and spectrophotometry while the material structure was analyzed by environmental ellipsometric porosimetry (EEP) and atomic force microscopy (AFM). The concentration of inorganic and organic phases was optimized and a broadband AR bi-layer stack was obtained providing a 7.2% (under the reference AM1.5 solar spectral irradiance) increase in transmittance over bare glass in the wavelength range 300–2000 nm when coated on both sides.
Sol-gel, Broadband, Silica, Porous coating, Acid-catalyzed, Antireflection
Sol-gel, Broadband, Silica, Porous coating, Acid-catalyzed, Antireflection
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).36 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
