
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Molten chloride salts for next generation concentrated solar power plants: Mitigation strategies against corrosion of structural materials

Molten chloride salts for next generation concentrated solar power plants: Mitigation strategies against corrosion of structural materials
Abstract Molten chloride salts are promising advanced high-temperature (400–800 °C) thermal energy storage (TES) and heat transfer fluid (HTF) materials in next generation concentrated solar power (CSP) plants for higher energy conversion efficiencies. However, severe corrosion of structural materials in contact with molten chloride salts is one of the most critical challenges limiting their applications at elevated temperatures. In this work, two corrosion mitigation strategies are investigated to alleviate the hot corrosion of structural materials in molten chloride salts: (1) adding corrosion inhibitor and (2) using a Fe-Cr-Al alloy with a protective alumina layer on the surface after pre-oxidation. Three commercial high temperature Fe-Cr-Ni alloys (SS 310, Incoloy® 800 H and Hastelloy® C-276) were exposed to molten MgCl2-NaCl-KCl (60–20–20 mol%) mixed salts with 1 wt% Mg as corrosion inhibitor, for 500 h at 700 °C under inert atmosphere. By addition of the Mg inhibitor, the corrosion rates of the studied alloys were found to be significantly reduced, more precisely by ~ 83% for SS 310, ~ 70% for In 800 H and ~ 94% for Ha C-276 compared with the exposure tests without Mg addition. The corrosion mitigation mechanism of Fe-Cr-Ni based alloys in molten chloride salts by adding Mg is discussed based on corrosion thermodynamics. To assess the second mitigation strategy two pre-oxidized alumina forming Fe-Cr-Al alloys were exposed to the same molten chloride salts without Mg corrosion inhibitor under the same conditions. It is observed that the adherent alumina scales can effectively inhibit the dissolution of Cr and Fe and the bulk penetration of corrosive impurities. Overall, both strategies offer enormous potential for enhancing the expected lifetime of commercial alloys in molten chloride salts.
- Karlsruhe Institute of Technology Germany
- German Aerospace Center Germany
Technology, ddc:600, Corrosion mitigation, Thermische Prozesstechnik, 600, 620, Molten salts, Corrosion inhibitor, Alumina forming Fe-Cr-Al alloys., info:eu-repo/classification/ddc/600, Concentrated solar power (CSP), Thermal energy storage (TES)
Technology, ddc:600, Corrosion mitigation, Thermische Prozesstechnik, 600, 620, Molten salts, Corrosion inhibitor, Alumina forming Fe-Cr-Al alloys., info:eu-repo/classification/ddc/600, Concentrated solar power (CSP), Thermal energy storage (TES)
1 Research products, page 1 of 1
- 2016IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).164 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
