Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ KITopen (Karlsruhe I...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DLR publication server
Other literature type . 2019
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy Materials and Solar Cells
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Molten chloride salts for next generation concentrated solar power plants: Mitigation strategies against corrosion of structural materials

Authors: Ding, Wenjin; Shi, Hao; Jianu, Adrian; Xiu, Yanlei; Bonk, Alexander; Weisenburger, Alfons; Bauer, Thomas;

Molten chloride salts for next generation concentrated solar power plants: Mitigation strategies against corrosion of structural materials

Abstract

Abstract Molten chloride salts are promising advanced high-temperature (400–800 °C) thermal energy storage (TES) and heat transfer fluid (HTF) materials in next generation concentrated solar power (CSP) plants for higher energy conversion efficiencies. However, severe corrosion of structural materials in contact with molten chloride salts is one of the most critical challenges limiting their applications at elevated temperatures. In this work, two corrosion mitigation strategies are investigated to alleviate the hot corrosion of structural materials in molten chloride salts: (1) adding corrosion inhibitor and (2) using a Fe-Cr-Al alloy with a protective alumina layer on the surface after pre-oxidation. Three commercial high temperature Fe-Cr-Ni alloys (SS 310, Incoloy® 800 H and Hastelloy® C-276) were exposed to molten MgCl2-NaCl-KCl (60–20–20 mol%) mixed salts with 1 wt% Mg as corrosion inhibitor, for 500 h at 700 °C under inert atmosphere. By addition of the Mg inhibitor, the corrosion rates of the studied alloys were found to be significantly reduced, more precisely by ~ 83% for SS 310, ~ 70% for In 800 H and ~ 94% for Ha C-276 compared with the exposure tests without Mg addition. The corrosion mitigation mechanism of Fe-Cr-Ni based alloys in molten chloride salts by adding Mg is discussed based on corrosion thermodynamics. To assess the second mitigation strategy two pre-oxidized alumina forming Fe-Cr-Al alloys were exposed to the same molten chloride salts without Mg corrosion inhibitor under the same conditions. It is observed that the adherent alumina scales can effectively inhibit the dissolution of Cr and Fe and the bulk penetration of corrosive impurities. Overall, both strategies offer enormous potential for enhancing the expected lifetime of commercial alloys in molten chloride salts.

Country
Germany
Keywords

Technology, ddc:600, Corrosion mitigation, Thermische Prozesstechnik, 600, 620, Molten salts, Corrosion inhibitor, Alumina forming Fe-Cr-Al alloys., info:eu-repo/classification/ddc/600, Concentrated solar power (CSP), Thermal energy storage (TES)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    164
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
164
Top 1%
Top 10%
Top 1%
Green
bronze