Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Solar Energy Materia...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Solar Energy Materials and Solar Cells
Article . 2019 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Solar Energy Materials and Solar Cells
Article
License: CC BY NC ND
Data sources: UnpayWall
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Annealing prior to contact firing: A potential new approach to suppress LeTID

Authors: CheeMun Chong; Chandany Sen; Alison Ciesla; Shaoyang Liu; Catherine Chan; Malcolm Abbott; Utkarshaa Varshney; +5 Authors

Annealing prior to contact firing: A potential new approach to suppress LeTID

Abstract

Abstract In this work, we introduce a new approach to suppress light and elevated temperature-induced degradation (LeTID) by applying a pre-fire annealing step using rapid thermal processing (RTP) and discuss the impact of this process on the evolution of bulk and surface lifetime components. We demonstrate that pre-fire annealing at low temperatures and/or shorter holding times allows a significant amount of hydrogen to migrate into the bulk to passivate bulk defects as including grain boundaries and dislocation clusters, without causing surface deterioration. As such, the addition of the pre-fire annealing step results in larger improvements in bulk and surface lifetime than that of the control samples. These conditions also significantly suppress LeTID. Increasing pre-fire annealing temperature and duration is shown to completely mitigate LeTID. However, this process may cause surface deterioration, possibly due to the excessive effusion of hydrogen out of the dielectric layer. Injection-dependent lifetime analysis shows that at the most degraded state, the bulk lifetime of the pre-fire annealed samples (650 °C–1 min and 3 min) remains relatively higher (∼110 μs–∼120 μs) than that of the control sample (∼40 μs). Applying pre-fire annealing process at 700 °C on Cz-Si samples and testing the boron-oxygen (B-O) generation behavior suggest that these processes cause a reduction in the hydrogen concentration in the bulk, resulting in slower B-O regeneration rate and reduction of regeneration extent. This result also implies that the suppression of LeTID in mc-Si by applying a pre-fire thermal treatment is likely due to a reduction of hydrogen in the bulk, and this highlights that the proposed method of pre-fire annealing may be unsuitable for material such as p-type Cz silicon subjected to B-O related degradation.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Top 10%
Top 10%
hybrid