
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Detachment yield statistics for kerfless wafering using the porous silicon process

Detachment yield statistics for kerfless wafering using the porous silicon process
Abstract The porous silicon (PSI) process is a wafering method to fabricate high quality kerfless crystalline Si wafers by epitaxial wafer growth on porous Si and subsequent detachment from a reusable substrate wafer. The process yield is a key parameter for the economic viability of the PSI process. We experimentally demonstrate the detachment of 59 out of 62 PSI wafers with a size of 10 × 10 cm2, and separation layer etch current densities of 105–120 mA/cm2 for electrochemically etching the porous Si, and for substrate wafers with a resistivity of 15.7–16.9 mΩcm. We discuss the statistics of how to deduce a detachment probability from this. From our experiments, we determine a detachment yield of at least 88% with an error probability of 5%. The demonstration of a 99% detachment yield with an error probability of 5% would require at least 300 successfully detached wafers with no failed detachment. Samples have a minority carrier density ranging from 1 to 1.7 ms before any external gettering, which demonstrates the high electric quality of the PSI wafers.
- Institut für Solarenergieforschung Germany
- Institut für Solarenergieforschung Germany
- University of Hannover Germany
