Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DLR publication serv...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DLR publication server
Other literature type . 2020
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy Materials and Solar Cells
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An inexpensive storage material for molten salt based thermocline concepts: Stability of AlferRock in solar salt

Authors: Bonk, Alexander; Knoblauch, Nicole; Braun, Markus; Bauer, Thomas; Schmücker, Martin;

An inexpensive storage material for molten salt based thermocline concepts: Stability of AlferRock in solar salt

Abstract

Abstract The implementation of inexpensive scalable thermal energy storage will play a crucial role in the successful establishment of dispatchable renewable energy technologies. Storage based on molten nitrate salts is one of the most relevant technologies implemented in the GWh-scale. Yet, there is significant cost reduction potential in replacing the conventional two-tank system by a single-tank thermocline system. The latter involves the use of a single-tank design where a large fraction of the costly salt is replaced by an inexpensive filler material. Industrial waste materials such as AlferRock (red-mud-derived Fe2O3-rich ceramics), have significant potential since they are readily available in the Mt-range and have adequate thermal and mechanical resistance at the intended temperature of use. This study explicitly investigates the corrosion resistance of AlferRock in Solar Salt, 60% NaNO3-40% KNO3 mixture, at 560 °C. By variation of particle sizes classical exposure tests as well as accelerated test methods can be applied to understand the long-term stability of this waste material under relevant conditions. Salt chemistry and compositional changes in the filler are analyzed in terms of ion chromatography, titration, diffraction techniques (XRD) as well as electron microscopy (SEM) coupled with element mapping (EDX).

Country
Germany
Related Organizations
Keywords

molten salt, concentrating solar power (CSP), thermal stability, heat transfer fluids (HTF), thermal energy storage (TES)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%