
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Passivation engineering for hysteresis-free mixed perovskite solar cells

Passivation engineering for hysteresis-free mixed perovskite solar cells
Abstract This work demonstrates the effectiveness of interfacial engineering and defect passivation in the bulk of mixed perovskite absorber to achieve high performance perovskite solar cells (PSCs). It is found that the extent of I–V hysteresis is most significant in PSCs with a single-layer electron transport layer (ETL) composed of SnO2 quantum dots (QD-SnO2) or SnO2 nanoparticles (NP–SnO2). The hysteresis of the PSCs can be effectively suppressed by adopting a multilayer structure for the ETL to optimize the ETL/perovskite interface. Furthermore, the performance of the PSCs can be enhanced by incorporating a controlled amount of an organic cross linker, 2,2′-(ethylenedioxy)bis (ethylammonium iodide) (EDAI), in the mixed perovskite absorber layers. The experimental results consistently show that incorporation of an optimal amount of EDAI is effective in passivating defect states in the bulk of mixed perovskite as well as the grain boundaries and film surface, while excessive EDAI significantly degrades the photovoltaic (PV) performance of PSCs due to generation of defects and electrically insulating properties of EDAI itself. Owing to the synergistic effect contributed from optimized ETL/perovskite interface and the mixed perovskite thin film, the PSC with an active area of 0.06 cm2 exhibits a champion power conversion efficiency (PCE) of ~19.0% with negligible hysteresis and improved stability. The proposed strategies were also applied to fabricate larger area devices from 0.15 cm2 to 0.85 cm2, exhibiting the PCEs of ~12%–18% with negligible hysteresis.
- University of Hong Kong China (People's Republic of)
- State University of New York at Potsdam United States
- Hong Kong Baptist University China (People's Republic of)
- Nazarbayev University Kazakhstan
- State University of New York at Potsdam United States
3 Research products, page 1 of 1
- 2020IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).25 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
