Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy Materials and Solar Cells
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Passivation engineering for hysteresis-free mixed perovskite solar cells

Authors: Shu Kong So; Fangzhou Liu; Zhuldyz Yelzhanova; Mannix P. Balanay; Charles Surya; Zhiwei Ren; Aleksandra B. Djurišić; +10 Authors

Passivation engineering for hysteresis-free mixed perovskite solar cells

Abstract

Abstract This work demonstrates the effectiveness of interfacial engineering and defect passivation in the bulk of mixed perovskite absorber to achieve high performance perovskite solar cells (PSCs). It is found that the extent of I–V hysteresis is most significant in PSCs with a single-layer electron transport layer (ETL) composed of SnO2 quantum dots (QD-SnO2) or SnO2 nanoparticles (NP–SnO2). The hysteresis of the PSCs can be effectively suppressed by adopting a multilayer structure for the ETL to optimize the ETL/perovskite interface. Furthermore, the performance of the PSCs can be enhanced by incorporating a controlled amount of an organic cross linker, 2,2′-(ethylenedioxy)bis (ethylammonium iodide) (EDAI), in the mixed perovskite absorber layers. The experimental results consistently show that incorporation of an optimal amount of EDAI is effective in passivating defect states in the bulk of mixed perovskite as well as the grain boundaries and film surface, while excessive EDAI significantly degrades the photovoltaic (PV) performance of PSCs due to generation of defects and electrically insulating properties of EDAI itself. Owing to the synergistic effect contributed from optimized ETL/perovskite interface and the mixed perovskite thin film, the PSC with an active area of 0.06 cm2 exhibits a champion power conversion efficiency (PCE) of ~19.0% with negligible hysteresis and improved stability. The proposed strategies were also applied to fabricate larger area devices from 0.15 cm2 to 0.85 cm2, exhibiting the PCEs of ~12%–18% with negligible hysteresis.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Average
Top 10%
Related to Research communities
Energy Research