
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Artificial linear brush abrasion of coatings for photovoltaic module first-surfaces

Artificial linear brush abrasion of coatings for photovoltaic module first-surfaces
Abstract Natural soiling and the subsequent requisite cleaning of photovoltaic (PV) modules result in abrasion damage to the cover glass. The durability of the front glass has important economic consequences, including determining the use of anti-reflective and/or anti-soiling coatings as well as the method and frequency of operational maintenance (cleaning). Artificial linear brush abrasion using Nylon 6/12 bristles was therefore examined to explore the durability of representative PV first-surfaces, i.e., the surface of a module incident to direct solar radiation. Specimens examined include silane surface functionalized-, roughened (etched)-, porous silica-coated-, fluoropolymer-coated-, and ceramic (TiO2 or ZrO2/SiO2/ZrO2/SiO2)-coated-glass, which are compared to monolithic-poly(methyl methacrylate) and -glass coupons. Characterization methods used in this study include: optical microscopy, ultraviolet–visible–near-infrared (UV-VIS-NIR) spectroscopy, sessile drop goniometry, white-light interferometry, atomic force microscopy (AFM), and depth-profiling X-ray photoelectron spectroscopy (XPS). The corresponding characteristics examined include: surface morphology, transmittance (i.e., optical performance), surface energy (water contact angle), surface roughness, scratch width and depth, and chemical composition, respectively. The study here was performed to determine coating failure modes; identify characterization methods that can detect nascent failures; compare the durability of popular contemporary coating materials; identify their corresponding damage characteristics; and compare slurry and dry-dust abrasion. This study will also aid in developing an abrasion standard for the PV industry.
- University of Chicago United States
- King’s University United States
- SLAC National Accelerator Laboratory United States
- Loughborough University United Kingdom
- National Renewable Energy Laboratory United States
1 Research products, page 1 of 1
- 2020IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).32 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
