Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy Materials and Solar Cells
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Flexible VO2 thermochromic films with narrow hysteresis loops

Authors: Xun Cao; Ping Jin; Ping Jin; Hongjie Luo; Tianci Chang; Ying Zhu; Jian Huang;

Flexible VO2 thermochromic films with narrow hysteresis loops

Abstract

Abstract Fabricating flexible vanadium dioxide (VO2) films is a serious challenge towards commercial applications. In this work, we proposed a new strategy to directly deposit VO2 thermochromic films on flexible substrates by using Cr2O3 structural template layer, which can serve as growth template for low temperature (~300 °C) deposition of VO2 films. The obtained crystalline VO2 films on flexible substrates show significant phase transition properties with narrow hysteresis loops. Optical and electrical characterizations have indicated phase transition features of the flexible VO2 films, with an excellent solar modulation ability (~60% at 2500 nm) and a resistivity change over 2 orders of magnitude. Meanwhile, the flexible VO2 film exhibits narrow hysteresis loops during the phase transition process, and the hysteresis loop widths are less than 1 °C. Flexibility and stability of VO2 film in this work has been demonstrated by a designed bending test, which can maintain stable thermochromic performance after over 5000 bending cycles. This work provided a facile strategy to fabricate VO2 films on flexible substrates as flexible electronic devices.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 1%
Related to Research communities
Energy Research