Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy Materials and Solar Cells
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Novel facet-engineered multi-doped TiO2 mesocrystals with unprecedented visible light photocatalytic hydrogen production

Authors: E. T. El Shenawy; Nageh K. Allam; Ayat N. El-Shazly; Ayat N. El-Shazly; Mahmoud A. Hamza; Mahmoud A. Hamza; Aiat Hegazy;

Novel facet-engineered multi-doped TiO2 mesocrystals with unprecedented visible light photocatalytic hydrogen production

Abstract

Abstract We report on the facile synthesis of anatase multi-doped TiO2 mesocrystals with highly energetic {001} facets and their outstanding photocatalytic activity. The structural and compositional properties were investigated via different techniques such as XRD, XPS, Raman photoluminescence, and electron paramagnetic resonance, which confirmed the fabrication of C, Co, and Ti3+-doped anatase single crystal-like mesocrystals. The Mott-Schottky analysis showed a drastic increase in the carrier density upon cobalt doping, resulting in a 6-fold increase in the photoelectrochemical performance compared to the undoped sample. Besides, the photocatalytic efficiency of the as-fabricated mesocrystals in the photochemical production of hydrogen was estimated under AM1.5 conditions without using any hole scavengers. The Co-doped C/Ti3+ TiO2 mesocrystals showed an unprecedented hydrogen production rate when compared to the other similar titanium-based mesocrystals. Finally, the unprecedented enhancement of Co-doped C/Ti3+ TiO2 mesocrystals in water splitting makes them promising candidates for various photocatalytic applications.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Top 1%
Top 10%
Top 1%
Related to Research communities
Energy Research