Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy Materials and Solar Cells
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effect of the double grading on the internal electric field and on the carrier collection in CIGS solar cells

Authors: Alban Lafuente-Sampietro; Katsuhisa Yoshida; Shenghao Wang; Shogo Ishizuka; Hajime Shibata; Nobuyuki Sano; Katsuhiro Akimoto; +1 Authors

Effect of the double grading on the internal electric field and on the carrier collection in CIGS solar cells

Abstract

Abstract In this article, we look, from the carrier perspective, at the effect of the double grading in a CIGS absorber, in order to understand its benefit compared to a single grading. We focus on the double grading effects on the conduction band edge, generation rate and carrier collection. We first show that, when the minimum bandgap position (notch position) is outside of the absorber depletion region, a local maximum of the conduction band edge appears at the back of the depletion region, creating a hump, which hinders the collection of electrons. Interpreting the effect of the grading as an effective electric field, we show that the hump is caused by the competition between the absorber internal electric field and the grading created effective electric field. From this, we deduce that the notch should be positioned in the depletion region. As expected, the generation rate increases significantly at the notch position. However, studying carrier collection and the recombination rate, we show that, even if in the ideal case we should observe a total collection of carriers generated in the depletion region, the recombination rate in the SCR increases significantly when the notch is in it. We propose that this is caused by the increased carrier generation close to recombination centres. The ideal notch position is, therefore, a compromise between being close enough to the front to have a maximal carrier collection and avoiding the creation of a hump, while minimizing the carrier recombination.

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research