Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy Materials and Solar Cells
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Solid-state reaction process for high-quality organometallic halide perovskite thin film

Authors: Chien-Chung Hsu; Fu-Rong Chen; Chuan-Jung Lin; Sheng-Min Yu; Sheng-Min Yu; Hao-Chien Cheng; Kun-Mu Lee; +1 Authors

Solid-state reaction process for high-quality organometallic halide perovskite thin film

Abstract

Abstract Recently, a hybrid perovskite material, ABX3 (A= Cs, CH3NH3, NH2CHNH2; B= Pb, Sn; X= Cl, Br, I), has received much attention as an active layer in new-generation solar cells. This material is usually fabricated with either a one-step or a two step process in solution. However, the surface morphology, nucleation rate and grain growth rate of the CH3NH3PbI3 perovskite light absorber prepared by the solution reaction process (SRP) are hard to control. Here, we show a fast solid-solid reaction process (SSRP), to fabricate ultraflat (roughness of approximately 12 nm) CH3NH3PbI3 perovskite thin films with large grain sizes (~947 nm). The SSRP simply involves directly contacting a lead iodide thin film (PbI2) with methylammonium iodide powder (CH3NH3I) without any chemical reagents at 120°C under a normal atmospheric environment. The SSRP reaction dynamics is investigated by an in situ heating scanning electron microscope (SEM) system. This innovative SSRP is an easy approach for the large-scale fabrication of planar heterojunction perovskite solar cells and allows us to demonstrate a power conversion efficiency of approximately 15.27% (active area of 0.16 cm2).

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Related to Research communities
Energy Research