Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy Materials and Solar Cells
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Is it possible for a photovoltaic-thermoelectric device to generate electricity at night?

Authors: Bin Zhao; Mingke Hu; Xianze Ao; Qingdong Xuan; Zhiying Song; Gang Pei;

Is it possible for a photovoltaic-thermoelectric device to generate electricity at night?

Abstract

Abstract Photovoltaic-thermoelectric (PV-TE) conversion is a promising method for power generation, which converts solar power into electricity using the photovoltaic (PV) effect of solar cells and simultaneously generates electricity by the Seebeck effect of the thermoelectric (TE) device based on the waste heat of solar cells. Here, the power generation of the PV-TE device at night is experimentally demonstrated using radiative cooling that harnesses the cold of the universe directly. The PV-TE device is constructed by attaching a TE device on the bottom of the glass-covered PV module, with a heat sink stuck on the opposite side of the TE device. The open-circuit voltage of the TE device integrated into the PV-TE device was measured to be approximately 9 mV, indicating that the PV-TE device can definitely generate electricity from the darkness. Moreover, a new configuration of the PV-TE device for continuous power generation in the day and night is conceptually proposed for further consideration. In summary, this work proves the possibility of the PV-TE device for nighttime power generation, which could provide an alternative pathway for a wide range of nighttime and all-day power-consumed applications, such as lower power sensors and monitors.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Top 1%
Top 10%
Top 1%