
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Is it possible for a photovoltaic-thermoelectric device to generate electricity at night?

Abstract Photovoltaic-thermoelectric (PV-TE) conversion is a promising method for power generation, which converts solar power into electricity using the photovoltaic (PV) effect of solar cells and simultaneously generates electricity by the Seebeck effect of the thermoelectric (TE) device based on the waste heat of solar cells. Here, the power generation of the PV-TE device at night is experimentally demonstrated using radiative cooling that harnesses the cold of the universe directly. The PV-TE device is constructed by attaching a TE device on the bottom of the glass-covered PV module, with a heat sink stuck on the opposite side of the TE device. The open-circuit voltage of the TE device integrated into the PV-TE device was measured to be approximately 9 mV, indicating that the PV-TE device can definitely generate electricity from the darkness. Moreover, a new configuration of the PV-TE device for continuous power generation in the day and night is conceptually proposed for further consideration. In summary, this work proves the possibility of the PV-TE device for nighttime power generation, which could provide an alternative pathway for a wide range of nighttime and all-day power-consumed applications, such as lower power sensors and monitors.
- University of Science and Technology of China China (People's Republic of)
- Nottingham Trent University United Kingdom
- Hefei University of Technology China (People's Republic of)
- Hefei University of Technology China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).44 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
