Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy Materials and Solar Cells
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Super absorbent polymer as support for shape-stabilized composite phase change material containing Na2HPO4·12H2O–K2HPO4·3H2O eutectic hydrated salt

Authors: Ting Zou; Tao Xu; Hongzhi Cui; Hongfei Tao; Huijin Xu; Xiaoqing Zhou; Qiliang Chen; +3 Authors

Super absorbent polymer as support for shape-stabilized composite phase change material containing Na2HPO4·12H2O–K2HPO4·3H2O eutectic hydrated salt

Abstract

Abstract Solar energy radiation during the midday could causes the internal temperature of building rising, thus resulting in a significant source of power consumption to run air conditioner devices for thermal comfort environment. A growing interest developed in phase change materials (PCMs) applied in building envelope owing to the prevailing energy challenges. A new type of shape-stabilized composite phase change material (CPCM) was developed by introducing a novel Na2HPO4·12H2O–K2HPO4·3H2O (DSP-PPDT) eutectic hydrated salt into super absorbent polymer (SAP), which was characterized by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD), Scanning electron microscope (SEM). Results indicated that DSP-PPDT eutectic hydrated salts in various ratios all can be formed, among which DSP-PPDT eutectic hydrated salt with the mass fraction of PPDT at 25% had a melting temperature of 24.26 °C, making it suitable for building envelope. The results of cooling tests suggested that 2% of Na2SiO3·9H2O nucleating agent could reduce the supercooling degree of the eutectic hydrated salt to 0.79 °C. The modified eutectic hydrated salt could be stabilized in the network structure of SAP at a mass fraction of 12% through physical interaction without leakage, which melted at 24.13 °C with the enthalpy of 172.7 J/g and had enhanced thermal stability, good thermal reliability at 100 thermal cycles as well as low thermal conductivity of 0.474 W/(m·K). The good thermal performances of CPCM make it a promising candidate applied in building envelope.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 1%