
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Multi-energy driven form-stable phase change materials based on SEBS and reduced graphene oxide aerogel
Multi-energy driven form-stable phase change materials based on SEBS and reduced graphene oxide aerogel
Abstract In this work, a series of novel multi-energy driven composite phase change materials (PCMs) were fabricated with paraffin wax (PW) as PCM, poly(styrene-b-ethylene-co-butylene-b-styrene) (SEBS) as the thickening agent, and reduced graphene oxide aerogel (rGOA) as multi-energy capture agent and support material. When the mass fraction of SEBS is in the range of 5 wt%-15 wt%, the composite PCMs can be formed as form-stable PCMs (FSPCMs) by the physical reaction. The enthalpy value of PW/SEBS5/rGOA is measured as high as 226 J/g. The prepared FSPCMs show a good thermal reliability due to little reduction of enthalpy value after 200 accelerate cycles. And the prepared FSPCMs present a good thermal stability according to the thermogravimetric analysis. The thermal conductivity results show that rGOA slightly improves the thermal conductivity of the FSPCMs. Moreover, the prepared FSPCMs show excellent photo-thermal and electro-thermal conversion performance with the help of rGOA which can harvest the photons and electrons. As a result, the PW/SEBS/rGOA PCMs have great promise in areas such as solar/electrical energy collection, thermal energy storage, and thermal management.
- Southeast University China (People's Republic of)
- Southwest Jiaotong University China (People's Republic of)
- Southeast University China (People's Republic of)
