
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Impact of polymeric stabilisers on the reaction kinetics of SrBr2

handle: 11583/2959516
Thermochemical heat storage (TCHS) in salt hydrates attracts increasing interest due to the high energy density combined with loss-free storage. Strontium bromide hexahydrate (SBH), and composites thereof, are often suggested as suitable materials for this application. Although many aspects of SBH composites have been thoroughly investigated, very little has been done on the fundamental aspects of the hydration reaction and interactions between composite components on a molecular level. In this paper, we examine the interaction between SBH and polymeric additives polydiallyldimethylammonium chloride (PDAC), sodium carboxymethyl cellulose (CMC), and polyacrylic acid (PAA) in previously developed TCHS composites. The primary function of the polymeric additives is enhanced mechanical integrity however this study investigates potential implications on reaction temperature and speed the addition of such components might have. Focus is given to the interaction between SrBr2 and PDAC since such composites showed (de)hydration behaviour deviating from pure SrBr2. The reaction kinetics are investigated at several points in the phase diagram through thermogravimetric analysis (TGA), supplemented by powder x-ray diffraction (XRD) studies. Our findings show that there exists an interaction between SrBr2 and PDAC which manifests itself through shrinkage of crystallite size and increased lattice strain induced by preferential binding of PDAC to SrBr2. Depending on the PDAC content in the composite we have found out that 1) at excessive amounts PDAC inhibits hydration due to its sequestering properties 2) at low amounts it an enhances reaction kinetics due its hydrophilic nature.
- Delft University of Technology Netherlands
- Technical University Eindhoven Netherlands
- Center for Sustainable Future Technologies Italy
- Eindhoven University of Technology Netherlands
- Polytechnic University of Turin Italy
Thermochemical energy storage, Composite, Polyelectrolytes, Salt hydration, Composite; Heat storage materials; Polyelectrolytes; Polymeric additives; Salt hydration; Thermochemical energy storage, Polymeric additives, SDG 7 - Affordable and Clean Energy, Heat storage materials, SDG 7 – Betaalbare en schone energie
Thermochemical energy storage, Composite, Polyelectrolytes, Salt hydration, Composite; Heat storage materials; Polyelectrolytes; Polymeric additives; Salt hydration; Thermochemical energy storage, Polymeric additives, SDG 7 - Affordable and Clean Energy, Heat storage materials, SDG 7 – Betaalbare en schone energie
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
