Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy Materials and Solar Cells
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Color-temperature performance of perovskite solar cells under indoor illumination

Authors: Talbanova N.; Komaricheva T.; Luchnikov L. O.; Ermolaev G.; Kurichenko V.; Muratov D. S.; Arsenin A.; +7 Authors

Color-temperature performance of perovskite solar cells under indoor illumination

Abstract

The halide perovskite based solar cells demonstrate rapid progress in photoelectric applications. Recent studies sparked the tremendous interest to the indoor photovoltaics supported by the vision for extensive use of low-power Internet of Things gadgets. The low-intensity illumination conditions are very different from the direct sunlight and artificial light sources (LED etc.) have variation of the emission spectra. In this paper, we investigated the output performance of the halide perovskite solar cells by varying the absorber band gap between 1.60 eV and 1.97 eV under different LED illumination intensity and color temperatures (CT). We also studied the impact of the absorber thickness on the solar cell’s performance under LED illumination. The experimental results show that perovskite absorber with the band-gap of 1.72 eV permits to reach the highest efficiency in the all range of studied CTs (1700–6500K) varying from 31.8% to 34.9% at 200 Lx and from 34.9% to 36.1% at 1000 Lx. The origins of the effects and difference of the output parameters for PSCs were discussed with the estimation of the Shockley-Quiessier limit for LED illumination.

Country
Italy
Keywords

Indoor photovoltaicsPerovskite solar cellColor temperature

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
Green
Related to Research communities
Energy Research