Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Strathprintsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy Materials and Solar Cells
Article . 2024 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
https://dx.doi.org/10.17868/st...
Article . 2024
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ultra-broadband near-infrared upconversion for solar energy harvesting

Authors: Georgios E. Arnaoutakis; Dmitry Busko; Bryce S. Richards; Aruna Ivaturi; Jeffrey M. Gordon; Eugene A. Katz;

Ultra-broadband near-infrared upconversion for solar energy harvesting

Abstract

Upconversion – the absorption of two or more photons resulting in radiative emission at a higher energy than the excitation – has the potential to enhance the efficiency of solar energy harvesting technologies, most notably photovoltaics. However, the required ultra-high light intensities and the narrow absorption bands of lanthanide ions limit efficient solar utilisation. In this paper, we report results from exciting upconverters with concentrated sunlight at flux densities up to 2300 suns, where the radiation is restricted to photon energies below the bandgap of silicon (corresponding to a wavelength λ = 1200 nm). Upconversion to λ = 980 nm is achieved by using hexagonal erbium-doped sodium yttrium fluoride (β-NaYF4: Er3+) in a fluoropolymer matrix. Upconversion has a nonlinear relation with irradiance, therefore at a high irradiance a threshold occurs where the process becomes linear. For β-NaYF4:25%Er3+, we find a two-photon threshold under concentrated sunlight at 320 suns. Notably, this threshold is lower than under corresponding laser excitation and can be related to all resonantly excited Er3+ ion levels and excited stated absorption. These results highlight a pathway that utilises a far broader portion of the solar spectrum for photovoltaics.

Countries
United Kingdom, Germany
Keywords

ddc:620, Environmental engineering, 530, 620, Chemical engineering, Production of electric energy or power, Engineering & allied operations, info:eu-repo/classification/ddc/620

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Average
Top 10%
Green
Related to Research communities
Energy Research