
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Ultra-broadband near-infrared upconversion for solar energy harvesting

Upconversion – the absorption of two or more photons resulting in radiative emission at a higher energy than the excitation – has the potential to enhance the efficiency of solar energy harvesting technologies, most notably photovoltaics. However, the required ultra-high light intensities and the narrow absorption bands of lanthanide ions limit efficient solar utilisation. In this paper, we report results from exciting upconverters with concentrated sunlight at flux densities up to 2300 suns, where the radiation is restricted to photon energies below the bandgap of silicon (corresponding to a wavelength λ = 1200 nm). Upconversion to λ = 980 nm is achieved by using hexagonal erbium-doped sodium yttrium fluoride (β-NaYF4: Er3+) in a fluoropolymer matrix. Upconversion has a nonlinear relation with irradiance, therefore at a high irradiance a threshold occurs where the process becomes linear. For β-NaYF4:25%Er3+, we find a two-photon threshold under concentrated sunlight at 320 suns. Notably, this threshold is lower than under corresponding laser excitation and can be related to all resonantly excited Er3+ ion levels and excited stated absorption. These results highlight a pathway that utilises a far broader portion of the solar spectrum for photovoltaics.
- Karlsruhe Institute of Technology Germany
- Ben-Gurion University of the Negev Israel
- Hellenic Mediterranean University Greece
- University of Strathclyde United Kingdom
- University of Western Australia Australia
ddc:620, Environmental engineering, 530, 620, Chemical engineering, Production of electric energy or power, Engineering & allied operations, info:eu-repo/classification/ddc/620
ddc:620, Environmental engineering, 530, 620, Chemical engineering, Production of electric energy or power, Engineering & allied operations, info:eu-repo/classification/ddc/620
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
