
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Thin silicon heterojunction solar cells in perovskite shadow: Bottom cell prospective

Perovskite/Silicon (Pero-Si) tandem with silicon heterojunction (SHJ) bottom cells is a promising highly efficient concept, which in the case of mass production will likely rely on the same wafer feedstock as the single junction Si solar cells. The thickness of these wafers is constantly decreasing for economic and sustainability reasons. We forecast that Si bottom cells for mass produced Pero-Si tandems will be based on wafers thinner than 100 μm. In our work we study challenges and opportunities related to this likely wafer thinning for the performance of the SHJ bottom cells operating in Perovskite shadow. We study SHJ cells prepared on 80 μm thick wafers in comparison to the reference cells based on 135 μm thick wafers addressing two issues: passivation and light management. Effects of passivating layer thickness, back reflector and antireflection coating are studied under AM1.5G standard test conditions, attenuated AM1.5G irradiance, and under Perovskite-filtered spectrum. We show that major wafer thickness reduction of 40% turns to only approx. 0.35%abs loss in the bottom cell efficiency. This minor loss can be reduced even further using highly technological ITO/MgF2/Ag back reflector and MgF2 anti-reflection coating. Our work shows that significant potential for Pero-Si tandems is waiting to be explored in the perovskite shadow from the SHJ bottom cell perspective.
Solar energy materials & solar cells 270, 112813 - (2024). doi:10.1016/j.solmat.2024.112813
Published by NH, Elsevier, Amsterdam [u.a.]
- Helmholtz Association of German Research Centres Germany
- Forschungszentrum Jülich Germany
- RWTH Aachen University Germany
- Forschungszentrum Jülich GmbH Germany
info:eu-repo/classification/ddc/620, 620
info:eu-repo/classification/ddc/620, 620
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
