Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Solar Energy Materia...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Solar Energy Materials and Solar Cells
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermal effect of VIPV modules in refrigerated trucks

Authors: Luis Eduardo Alanis; Andreas Velte-Schäfer; Nishant Jajoo; Marc-Andre Schüler; Li Carlos Rendler; Dirk Holger Neuhaus; Martin Heinrich;

Thermal effect of VIPV modules in refrigerated trucks

Abstract

The integration of Photovoltaic (PV) modules within the outer structure of commercial transporters offers a great potential as an additional source of energy that can be utilized, for example, directly by the drive train of the vehicle, or by accessory equipment. However, to understand the benefits of such a system, the effect and relevance of some thermodynamic variables introduced by the Vehicle Integrated Photovoltaic (VIPV) system must be assessed. Particularly, the share of the solar irradiance that cannot be converted into electricity by the solar cell and is instead transformed into heat must be considered for certain applications such as the transportation of goods that require a controlled temperature. A one-dimensional thermal simulation model based on a Resistance-Capacitance methodology was created and validated experimentally. The model was used to predict the thermal behavior of the box-body of a truck for a representative year in three cities in Europe (Stockholm, Freiburg, and Seville), with a known Bill of Materials (BOM), and a set of given assumptions and constraints. It was found that, under the simulated conditions laid in this study, the additional heat generated by the PV modules that manages to go through the insulation material and reach the refrigerated cargo area, may raise the temperature of the contained air by an average of 0.36 °C, 0.5 °C, and 0.67 °C, respectively for the observed cities, and as much as 3.12 °C, 2.98 °C and 2.61 °C. When forced convection caused by the movement of the truck was applied into the model (with a constant wind speed of 50 km/h), the temperature of the solar cell dropped significantly, which, for the case of Freiburg, meant an increase in the contained air temperature of a maximum of 0.6 °C. A refrigeration system was subsequently considered for a target air temperature of 2 °C and -18 °C, and it was found that for the simulated scenarios, the harvested solar energy could easily offset the additional energetic demand caused by the PV system, and, in most cases, completely balance out the total annual demand of the chiller.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
hybrid
Related to Research communities
Energy Research