
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Hydrogenation characteristics of p-type poly-Si passivating contacts on textured surface for double-sided TOPCon devices

An effective hydrogenation process for polycrystalline silicon based passivating contacts (TOPCon) is crucial to achieve a very high level of surface passivation. This work examines the hydrogenation characteristics of p-type TOPCon on textured surface morphology by applying dielectric layers such as AlOx, SiNx and stacks thereof followed by an activation in a furnace anneal or by fast-firing. In a direct comparison with n-type TOPCon, p-type TOPCon requires higher activation temperatures and a higher activation energy. For a successful integration of n-type and p-type TOPCon into bottom cell precursors with 726 mV implied Voc for tandem devices, stacks featuring AlOx are beneficial to increase the thermal stability especially for n-type TOPCon. With regards to fast-firing processes, the influence of an additional pre- or post-annealing step is investigated. The peak firing temperature can significantly be reduced when applying an annealing step beforehand and a post-firing anneal improves surface passivation to recombination current densities J0s as low as 7.9 fA/cm2 for p-type TOPCon on textured surface which is one of the lowest reported in literature.
In Situ Boron-Doped Poly-Si, TOPCon, Silicon Bottom Cells
In Situ Boron-Doped Poly-Si, TOPCon, Silicon Bottom Cells
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
