Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Radboud Repositoryarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Radboud Repository
Article . 2023
Data sources: Radboud Repository
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Spatial and Spatio-temporal Epidemiology
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The contribution of physical exertion to heat-related illness and death in the Arizona borderlands

Authors: Chambers, Samuel N.; Boyce, Geoffrey A.; Martinez, Daniel E.; Bongers, C.C.W.G.; Keith, L.;

The contribution of physical exertion to heat-related illness and death in the Arizona borderlands

Abstract

Recent studies and reports suggest an increased mortality rate of undocumented border crossers (UBCs) in Arizona is the result of heat extremes and climatic change. Conversely, others have shown that deaths have occurred in cooler environments than in previous years. We hypothesized that human locomotion plays a greater role in heat-related mortality and that such events are not simply the result of exposure. To test our hypothesis, we used a postmortem geographic application of the human heat balance equation for 2,746 UBC deaths between 1990 and 2022 and performed regression and cluster analyses to assess the impacts of ambient temperature and exertion. Results demonstrate exertion having greater explaining power, suggesting that heat-related mortality among UBCs is not simply a function of extreme temperatures, but more so a result of the required physical exertion. Additionally, the power of these variables is not static but changes with place, time, and policy.

Country
Netherlands
Keywords

Hot Temperature, Climate Change, Physical Exertion, Arizona, Radboudumc 16: Vascular damage Physiology, All institutes and research themes of the Radboud University Medical Center, Humans, Cluster Analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Green