
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Multidimensional genetic programming for multiclass classification

Abstract We describe a new multiclass classification method that learns multidimensional feature transformations using genetic programming. This method optimizes models by first performing a transformation of the feature space into a new space of potentially different dimensionality, and then performing classification using a distance function in the transformed space. We analyze a novel program representation for using genetic programming to represent multidimensional features and compare it to other approaches. Similarly, we analyze the use of a distance metric for classification in comparison to simpler techniques more commonly used when applying genetic programming to multiclass classification. Finally, we compare this method to several state-of-the-art classification techniques across a broad set of problems and show that this technique achieves competitive test accuracies while also producing concise models. We also quantify the scalability of the method on problems of varying dimensionality, sample size, and difficulty. The results suggest the proposed method scales well to large feature spaces.
- University of Massachusetts Amherst United States
- Universidade Nova de Lisboa Portugal
- University of Coimbra Portugal
- Universidade Nova de Lisboa Portugal
- University of Massachusetts System United States
Mathematics(all), Multiclass classification, Feature selection, Feature extraction, Dimensionality reduction, Feature synthesis, Genetic programming, Computer Science(all)
Mathematics(all), Multiclass classification, Feature selection, Feature extraction, Dimensionality reduction, Feature synthesis, Genetic programming, Computer Science(all)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).50 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
