Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Tetrahedronarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Tetrahedron
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Synthesis and properties of triazole bridged BODIPY-conjugates

Authors: GANAPATHI, E; MADHU, S; RAVIKANTH, M;

Synthesis and properties of triazole bridged BODIPY-conjugates

Abstract

Abstract A series of triazole bridged BODIPY-conjugates were synthesized under click reaction conditions. The 3-azido BODIPY was generated in situ by treating 3-bromo BODIPY with NaN 3 in CH 3 CN at room temperature for 60 min and reacted with appropriate ethynyl containing chromophore/redox active unit, such as ferrocene, BODIPY, Zn(II) porphyrin, 21,23-dithiaporphyrin, BF 2 -smaragdyrin in the presence of CuI/DIPEA in THF/CH 3 CN solvent. The conjugates were purified by column chromatography and obtained pure compounds in 45–50% yields. The conjugates were characterized by HR-MS, 1D, 2D, 19 F and 11 B NMR and X-ray crystallography for BODIPY-ferrocene conjugate. Absorption and electrochemical studies showed features of both the moieties present in the conjugates and also support interaction between the two moieties in the conjugates. The fluorescence studies supported an efficient energy transfer from BODIPY unit to BF 2 -smaragdyrin unit in BODIPY–BF 2 -smaragdyrin conjugate but the energy transfer was not efficient in BODIPY–Zn(II) porphyrin and BODIPY–21,23-dithiaporphyrin conjugates.

Country
India
Keywords

Bf2-Smaragdyrin, Fluorescent Sensor, Energy-Transfer, Living Cells, Bodipy, Functionalized Boron, Chromophores, 540, Boron Dipyrromethene Dyes, Chemistry, Energy Transfer, Building-Blocks, Click Chemistry, Spectroscopic Properties, Spectral Properties, Derivatives

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Average
Top 10%
Related to Research communities
Energy Research