
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Controlling Voltage Reversal in Microbial Fuel Cells

pmid: 31980302
Microbial fuel cell (MFC) systems have been developed for potential use as power sources, along with several other applications, with bacteria as the prime factor enabling electrocatalytic activity. Limited voltage and current production from unit cells limit their practical applicability, so stacking multiple MFCs has been proposed as a way to increase power production. Special attention is paid to voltage reversal (VR), a common occurrence in stacked MFCs, and to identifying the mechanisms underlying this phenomenon. We also proposed realistic perspectives on stacked MFCs in an effort to control and suppress VR by balancing the kinetics in the system, such as using enriched electroactive microorganisms or altering the circuitry mode.
- University of South Wales United Kingdom
- UNSW Sydney Australia
- Aarhus University Denmark
- Indian Institute of Chemical Technology India
- University of South Wales United Kingdom
stackable MFC, Bacteria, Bioelectric Energy Sources, voltage reversal, kinetics imbalance, microbial fuel cell, Kinetics, Electric Power Supplies, Electricity, Humans, electroactive microorganisms, Electrodes
stackable MFC, Bacteria, Bioelectric Energy Sources, voltage reversal, kinetics imbalance, microbial fuel cell, Kinetics, Electric Power Supplies, Electricity, Humans, electroactive microorganisms, Electrodes
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).87 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
