
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Dynamics and spatial organization of plant communities in water-limited systems

pmid: 17628624
Dynamics and spatial organization of plant communities in water-limited systems
A mathematical model for plant communities in water-limited systems is introduced and applied to a mixed woody-herbaceous community. Two feedbacks between biomass and water are found to be of crucial importance for understanding woody-herbaceous interactions: water uptake by plants' roots and increased water infiltration at vegetation patches. The former acts to increase interspecific competition while the latter favors facilitation. The net interspecific interaction is determined by the relative strength of the two feedbacks. The model is used to highlight new mechanisms of plant-interaction change by studying factors that tilt the balance between the two feedbacks. Factors addressed in this study include environmental stresses and patch dynamics of the woody species. The model is further used to study mechanisms of species-diversity change by taking into consideration tradeoffs in species traits and conditions giving rise to irregular patch patterns.
Models, Statistical, Plants, Species Specificity, Water Supply, Biomass, Israel, Ecosystem, Demography
Models, Statistical, Plants, Species Specificity, Water Supply, Biomass, Israel, Ecosystem, Demography
2 Research products, page 1 of 1
- 1978IsAmongTopNSimilarDocuments
- 2003IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).91 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
