
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Driving forces of Turkey's transportation sector CO2 emissions: An LMDI approach

handle: 11729/2371
Abstract The transportation sector is one of the main contributors to global greenhouse gas (GHG) emissions. As the efforts towards emission mitigation increase, the expectation from the sector arises equally. In this analysis, the transportation sector of Turkey is studied to shed light on the future based on historical realizations. In this respect, the Logarithmic Mean Divisia Index (LMDI) method is used to assess and reveal the influential factors on CO2 emissions in the sector between 2000 and 2017. The emission intensity of the sector and fuel switching shows promising trends from 2000 through 2010, whereas growing preference for SUVs challenges emission reductions between 2010 and 2017. The results indicate that i) The transportation sector CO2 emissions are mainly driven upwards by economic growth, followed by population and emission intensity effects from 2000 to 2017 ii) The overall impact of transportation intensity shows significant reduction potential iii) Fuel switching incentives and fleet efficiency have a positive effect on emission mitigation from 2000 through 2010. However, this gain is reduced due to the rising popularity of SUVs in the rest of the analysis period. In this respect, CO2 emission mitigation in the transportation sector necessitates 1) careful planning of demand management for freight transportation including master designs production/manufacturing sites, material flows, and demand points coupled with economic activities 2) passenger transportation measures to reduce passenger car travel including zoning for public transit corridors, improved public transportation system 3) well-structured incentives on energy-efficient cars and clean energy technologies such as electric vehicles to convince individuals. Analysis can be generalized on a global scale due to the similar dynamics inherent in the sector.
- Işık University Turkey
- Ankara Bilim Üniversitesi Turkey
- ISIK UNIVERSITY Turkey
- Işık University Turkey
- ISIK UNIVERSITY Turkey
Renewable energy, China, Emission inventory, Intensity, Mitigation, Turkey, Energy-consumpion, Carbon emission, 910, CO2 emissions, Demand analysis, Carbon-dioxide emissions, Freight transport, Transportation sector, Transportation planning, Traffic management, Decomposition analysis, Europe, Carbon dioxide, Emission control, Traffic emission, LMDI
Renewable energy, China, Emission inventory, Intensity, Mitigation, Turkey, Energy-consumpion, Carbon emission, 910, CO2 emissions, Demand analysis, Carbon-dioxide emissions, Freight transport, Transportation sector, Transportation planning, Traffic management, Decomposition analysis, Europe, Carbon dioxide, Emission control, Traffic emission, LMDI
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).81 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
