Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Transportation Resea...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Transportation Research Part B Methodological
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Energy-efficient metro train rescheduling with uncertain time-variant passenger demands: An approximate dynamic programming approach

Authors: Yin, Jiateng; Tang, Tao; Yang, Lixing; Gao, Ziyou; Ran, Bin;

Energy-efficient metro train rescheduling with uncertain time-variant passenger demands: An approximate dynamic programming approach

Abstract

Abstract In a heavily congested metro line, unexpected disturbances often occur to cause the delay of the traveling passengers, infeasibility of the current timetable and reduction of the operational efficiency. Due to the uncertain and dynamic characteristics of passenger demands, the commonly used method to recover from disturbances in practice is to change the timetable and rolling stock manually based on the experiences and professional judgements. In this paper, we develop a stochastic programming model for metro train rescheduling problem in order to jointly reduce the time delay of affected passengers, their total traveling time and operational costs of trains. To capture the complexity of passenger traveling characteristics, the arriving ratio of passengers at each station is modeled as a non-homogeneous poisson distribution, in which the intensity function is treated as time-varying origin-to-destination passenger demand matrices. By considering the number of on-board passengers, the total energy usage is modeled as the difference between the tractive energy consumption and the regenerative energy. Then, we design an approximate dynamic programming based algorithm to solve the proposed model, which can obtain a high-quality solution in a short time. Finally, numerical examples with real-world data sets are implemented to verify the effectiveness and robustness of the proposed approaches.

Country
Australia
Keywords

Metro train rescheduling, ridership - demand, planning - travel demand management, Approximate dynamic programming, mode - subway/metro, 380, Stochastic programming, economics - operating costs, Energy efficiency, Passenger delay, operations - scheduling

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    256
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
256
Top 1%
Top 1%
Top 1%
bronze