Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Transportation Resea...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Transportation Research Part D Transport and Environment
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Quantifying and analyzing traffic emission reductions from ridesharing: A case study of Shanghai

Authors: Longxu Yan; Paolo Santi; Rui Zhu; De Wang; Shangwu Zhang; Xiao Luo; Carlo Ratti; +1 Authors

Quantifying and analyzing traffic emission reductions from ridesharing: A case study of Shanghai

Abstract

Abstract Ridesharing has potential to mitigate traffic emissions. To better support policymaking, this paper endeavors to estimate and analyze emission reductions by large-scale ridesharing combining the Shareability-Network approach, the COPERT III emission model, and a speed-density traffic-flow model. Using Shanghai as a case, we show that ridesharing per se can reduce fuel-consumption (FC) by 22.88% and 15.09% in optimal and realistic scenarios, respectively, with corresponding emissions reductions. Ridesharing’s spontaneous first-order speed effect further reduces FC by 0.34–0.96%. Additionally, spatial analyses show that ridesharing reduces more emissions on severely polluted roads, leading to two spatial patterns; temporal analyses demonstrate patterns shifted from disorganized to organized. Both the phenomena can be explained by the aggregation of trips and the grading and topology of the roads. Moreover, ridesharing may also increase emissions on some branch roads, creating a new environmental injustice, which, however, is estimated to be less significant than expected.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Top 1%
Top 10%
Top 1%