Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Transportation Geote...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Transportation Geotechnics
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2023
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Design of railway transition zones: A novel energy-based criterion

Authors: Jain, A. (author); Metrikine, A. (author); Steenbergen, M.J.M.M. (author); van Dalen, K.N. (author);

Design of railway transition zones: A novel energy-based criterion

Abstract

Railway transition zones (RTZs) experience higher rates of degradation compared to open tracks, which leads to increased maintenance costs and reduced vailability. Despite existing literature on railway track assessment and maintenance, effective design solutions for RTZs are still limited. Therefore, a robust design criterion is required to develop effective solutions. This paper presents a two-step approach for formulation of a design criterion to delay the onset of processes leading to uneven track geometry due to operation driven permanent deformations in RTZs. Firstly, a systematic analysis of each track component in a RTZ is performed by examining spatial and temporal variations in kinematic responses, stresses and energies. Secondly, the study proposes an energy-based criterion to be assessed using a model with linear elastic material behavior, and states that an amplification in the total strain energy in the proximity of the transition interface is an indicator of increased (and thus non-uniform) degradation in RTZs compared to the open tracks. The correlation between the total strain energy (assessed in the model with linear material behaviour) and the permanent irreversible deformations is demonstrated using a model with non-linear elastoplastic material behavior of the ballast layer. In the end, it is claimed that minimising the magnitude of total strain energy will lead to reduced degradation and a uniform distribution of total strain energy in each trackbed layer along the longitudinal direction of the track will ensure uniformity in the track geometry.

Countries
Netherlands, Australia, Australia
Keywords

690, Track degradation, FOS: Physical sciences, Physics - Applied Physics, Applied Physics (physics.app-ph), 624, Energy analysis, infrastructure - maintainance, 620, mode - rail, Design criterion, infrastructure - track, Railway transition zones, Finite element model, Strain energy

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Top 10%
Related to Research communities
Energy Research