Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRIS Cnrarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Thermal Science and Engineering Progress
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
CNR ExploRA
Article . 2020
Data sources: CNR ExploRA
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modelling and performance assessment of a thermally-driven cascade adsorption cycle suitable for cooling applications

Authors: M. Aprile; A. Freni; T. Toppi; M. Motta;

Modelling and performance assessment of a thermally-driven cascade adsorption cycle suitable for cooling applications

Abstract

Adsorption chillers can provide energy efficient cooling and have large potential for performance increase and cost reduction compared to conventional chillers. Among the different R&D activities currently in progress in the field, the development of advanced cascading adsorption cycles is an effective way to improve the performance of standard adsorption units, making this technology especially interesting in applications where waste heat for driving the adsorption chiller is a widely available, such as many industrial processes, cogeneration plants, I.C. engines, district heating networks. In this paper, a novel modelling tool able to simulate complex adsorption cycles is presented and validated with literature data. The simulation tool is used to investigate numerically the performance of a cascade adsorption cycle consisting of a twin adsorber high-temperature cycle with heat recovery coupled with an intermittent adsorber low-temperature cycle. A parametric analysis is carried out showing the optimization potential in terms of Coefficient Of Performance (COP) and specific cooling power (SCP) with varying cycle periods, step time ratios and adsorbent mass ratios. COP of 0.97 with SCP of 142 W/kg are found for water-zeolite 4A (high-temperature) and water-CaCl2/Silica gel (low-temperature cycle). These results are in line with previous findings reported in literature. Finally, useful recommendations for further performance improvement are provided.

Country
Italy
Keywords

Adsorption, Cooling, Cascade cycles, Simulation, Cascade cycles, Adsorption, Cooling, Simulation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Green