Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della ricer...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Waste Management
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Physical and chemical treatment of end of life panels: An integrated automatic approach viable for different photovoltaic technologies

Authors: PAGNANELLI, Francesca; MOSCARDINI, Emanuela; GRANATA, GIUSEPPE; ABO ATIA, THOMAS; ALTIMARI, PIETRO; Havlik, Tomas; TORO, Luigi;

Physical and chemical treatment of end of life panels: An integrated automatic approach viable for different photovoltaic technologies

Abstract

Different kinds of panels (Si-based panels and CdTe panels) were treated according to a common process route made up of two main steps: a physical treatment (triple crushing and thermal treatment) and a chemical treatment. After triple crushing three fractions were obtained: an intermediate fraction (0.4-1mm) of directly recoverable glass (17%w/w); a coarse fraction (>1mm) requiring further thermal treatment in order to separate EVA-glued layers in glass fragments; a fine fraction (<0.4mm) requiring chemical treatment to dissolve metals and obtain another recoverable glass fraction. Coarse fractions (62%w/w) were treated thermally giving another recoverable glass fraction (52%w/w). Fine fractions can be further sieved into two sub-fractions: <0.08mm (3%w/w) and 0.08-0.4mm (22%w/w). Chemical characterization showed that 0.08-0.4mm fractions mainly contained Fe, Al and Zn, while precious and dangerous metals (Ag, Ti, Te, Cu and Cd) are mainly present in fractions <0.08mm. Acid leaching of 0.08-0.4mm fractions allowed to obtain a third recoverable glass fraction (22%w/w). The process route allowed to treat by the same scheme of operation both Si based panels and Cd-Te panels with an overall recycling rate of 91%.

Country
Italy
Keywords

Silicon, Silver, Iron, Chemical Fractionation, Zinc, Metals, Heavy, Cadmium Compounds, Recycling, Tellurium, photovoltaic panels; physical treatment; chemical treatment; glass recovery; recycling, Copper, Aluminum, Environmental Monitoring

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    130
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
130
Top 1%
Top 10%
Top 1%