Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della ricer...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Article . 2019
Data sources: CNR ExploRA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Waste Management
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2019
Data sources: IRIS Cnr
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Anaerobic co-digestion of food waste and waste activated sludge: ADM1 modelling and microbial analysis to gain insights into the two substrates’ synergistic effects

Authors: Montecchio D; Astals S; Di Castro V; Gallipoli A; Gianico A; Pagliaccia P; Piemonte V; +3 Authors

Anaerobic co-digestion of food waste and waste activated sludge: ADM1 modelling and microbial analysis to gain insights into the two substrates’ synergistic effects

Abstract

The reasons for the acidification problem affecting Food Waste (FW) anaerobic digestion were explored, combining the outcomes of microbiological data (FISH and CARD-FISH) and process modelling, based on the Anaerobic Digestion Model n°1 (ADM1). Long term semi continuous experiments were carried out, both with sole FW and with Waste Activated Sludge (WAS) as a co-substrate, at varying operational conditions (0.8-2.2 g VS L-1 d-1) and FW / WAS ratios. Acidification was observed along FW mono-digestion, making it necessary to buffer the digesters; ADM1 modelling and experimental results suggested that this phenomenon was due to the methanogenic activity decline, most likely related to a deficiency in trace elements. WAS addition, even at proportions as low as 10% of the organic load, settled the acidification issue; this ability was related to the promotion of the methanogenic activity and the consequent enhancement of acetate consumption, rather than to WAS buffering capacity. The ability of the ADM1 to model processes affected by low microbial activity, such as FW mono-digestion, was also assessed. It was observed that the ADM1 was only adequate for digestions with a high activity level for both bacteria and methanogens (FISH/CARD-FISH ratio preferably >0.8) and, under these conditions, the model was able to correctly predict the relative abundance of both microbial populations, extrapolated from FISH analysis.

Countries
Italy, Australia, Italy, Italy
Keywords

ADM1, Sewage, 590, Biogas, Biowaste, Pepsin A, 2311 Waste Management and Disposal, ADM 1, Acidification, Microbial activity, Bioreactors, Anaerobic co-digestion, Food, Anaerobiosis, biogas; ADM1; anaerobic co-digestion; biowaste; acidification; microbial activity, Methane

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    43
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
43
Top 1%
Top 10%
Top 10%