
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Life cycle assessment of woody biomass ash for soil amelioration

pmid: 31610474
The increasing use of forest biomass as a fuel for power plants due to environmental concerns will certainly increase the amount of woody biomass ash produced. Because of the environmental problems derived from woody biomass ash disposal, an important aspect for the sustainable development of the energy sector is the implementation of effective ash management strategies. The purpose of this study is to assess the environmental impacts of woody biomass ash landfarming for soil amelioration through a Life Cycle Assessment. The baseline scenario corresponds to the current most common practice of woody biomass ash management (landfilling), and two different landfarming alternatives were assessed: liming and fertilisation. Credits were given to the system due to the substitution of three traditional liming products and five traditional fertilisers. Woody biomass ash landfarming presented satisfactory performance in five impact categories under study in comparison to landfilling. When woody biomass ash was used for liming, the environmental savings were more pronounced when substituting hydrated lime. For potassium supply, the substitution of potassium nitrate by woody biomass ash presented the best environmental performance, while for phosphorus supply, the environmental savings were more pronounced substituting single superphosphate. However, in four impact categories, the environmental impacts of ash landfarming exceeded the impacts of ash landfilling, due to the emission to soil of nutrients and trace elements to soil. But this does not necessarily imply increased risks for the environment, as the potential pollutants leaching depends on their bioavailability in the soil.
- Centro de Estudos Ambientais e Marinhos Portugal
- University of Aveiro Portugal
- Centro de Estudos Ambientais e Marinhos Portugal
- University of Aveiro Portugal
Forests, Coal Ash, Trace Elements, Soil, Soil Pollutants, Biomass, Fertilizers
Forests, Coal Ash, Trace Elements, Soil, Soil Pollutants, Biomass, Fertilizers
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).30 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
