Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The University of Ma...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Waste Management
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Rapeseed meal valorization strategies via nitrogen- and oxygen-limited production of polyhydroxyalkanoates with Pseudomonas putida

Authors: Phavit Wongsirichot; Maria Gonzalez-Miquel; James Winterburn;

Rapeseed meal valorization strategies via nitrogen- and oxygen-limited production of polyhydroxyalkanoates with Pseudomonas putida

Abstract

Rapeseed meal (RSM) is a candidate for biopolymer production due to its abundance, low cost and potential integration with other rapeseed-derived products. However, existing studies pursuing such schemes are limited. The feasibility of different strategies for RSM valorization via protein extraction and polyhydroxyalkanoate production were evaluated. Nitrogen-limited RSM media was produced from hydrolysis of residues which had undergone extensive protein extraction using sodium hydroxide. A study of oxygen-limited fermentation was also performed on hydrolysate of untreated RSM via batch feeding. The typical strategy of using a high carbon-to-nitrogen ratio may not be the most suitable route for polyhydroxyalkanoate (PHA) production using nitrogen-rich biomass as a feedstock. Central composite design-based experiments show that due to mass transfer limitations protein extraction at 1-L scale could only achieve yields around 50% and 69%, at room temperature and 60 °C, respectively. Protein extraction yields reduced with successive extractions, meaning that whilst the RSM hydrolysate is viable for growth, designing a valorization scheme which has the fermentation step dictated by the protein extraction may not be practical/economical. A better route which utilizes oxygen-limitation to initially induce stationary phase was identified, giving accumulation of polyhydroxyalkanoate once the oxygen levels began to recover; 8.93% and 1.75% PHA accumulation in fed-batch cultures of synthetic and RSM media, respectively. The findings demonstrate that decoupling of protein extraction performance from PHA synthesis is feasible. This study provides important insight into the degrees of freedom available in the design of a holistic valorization scheme of rapeseed meal, and high protein lignocellulosic biomass in general.

Country
United Kingdom
Related Organizations
Keywords

Nitrogen, Pseudomonas putida, Polyhydroxyalkanoates, polyhydroxyalkanoates, Brassica napus, Oxygen, waste valorization, Bioreactors, Fermentation, Rapeseed meal, Biomass, central composite design, fermentation techniques, protein extraction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Average
Top 10%
Green