Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Water Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Water Research
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Water Research
Article . 2007
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparison of microfauna communities in full scale subsurface flow constructed wetlands used as secondary and tertiary treatment

Authors: Francesc Granés; Jaume Puigagut; Humbert Salvadó; Joan García; David García;

Comparison of microfauna communities in full scale subsurface flow constructed wetlands used as secondary and tertiary treatment

Abstract

In order to evaluate the microfauna composition and distribution in two horizontal subsurface flow constructed wetlands used as secondary and tertiary treatment a full-scale wastewater treatment plant was monitored during five months. Results indicate that total microfauna abundance in the wetland treating primary influents is around five times higher than that found in the wetland treating secondary influents. Ciliated protozoa and microflagellates are the most important microfauna groups in both wetlands; microflagellates in terms of abundance and ciliates in terms of biomass. The most abundant ciliate species in the wetland treating primary influents are polysaprobic organisms as Dexiostoma campylum, Trimyema compressum, and to a lesser extend Metopus spp. On the other hand, the most important ciliate species found in the wetland treating secondary influents are mainly aerobic ciliates as Vorticella comvallaria-complex, Aspidisca cicada, Litonotus lamella and some ciliates belonging to the group of the scuticociliates and Hypotrichidae. The sort of the organic matter treated (particulated or dissolved) is at least as important as the amount of it in order to explain microfauna dynamics in constructed wetlands.

Keywords

Population Dynamics, Eukaryota, Waste Disposal, Fluid, Wetlands, Water Movements, Animals, Biomass

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Top 10%
Top 10%