Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Wageningen Staff Pub...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research@WUR
Article . 2012
Data sources: Research@WUR
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research@WUR
Other literature type . 2012
Data sources: Research@WUR
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Water Research
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ammonium recovery and energy production from urine by a microbial fuel cell

Authors: Kuntke, P.; Smiech, K.M.; Bruning, H.; Zeeman, G.; Saakes, M.; Sleutels, T.H.J.A.; Hamelers, H.V.M.; +1 Authors

Ammonium recovery and energy production from urine by a microbial fuel cell

Abstract

Nitrogen recovery through NH(3) stripping is energy intensive and requires large amounts of chemicals. Therefore, a microbial fuel cell was developed to simultaneously produce energy and recover ammonium. The applied microbial fuel cell used a gas diffusion cathode. The ammonium transport to the cathode occurred due to migration of ammonium and diffusion of ammonia. In the cathode chamber ionic ammonium was converted to volatile ammonia due to the high pH. Ammonia was recovered from the liquid-gas boundary via volatilization and subsequent absorption into an acid solution. An ammonium recovery rate of 3.29 g(N) d(-1) m(-2) (vs. membrane surface area) was achieved at a current density of 0.50 A m(-2) (vs. membrane surface area). The energy balance showed a surplus of energy 3.46 kJ g(N)(-1), which means more energy was produced than needed for the ammonium recovery. Hence, ammonium recovery and simultaneous energy production from urine was proven possible by this novel approach.

Country
Netherlands
Related Organizations
Keywords

Male, Energy-Generating Resources, microbial fuel cells, ph, Bioelectric Energy Sources, energy recovery, Centrifugation, Urine, perfluorosulfonic membranes, waste water treatment plants, Waste Disposal, Fluid, Motion, Electric Impedance, Humans, Sectie Milieutechnologie, Electrodes, microbiële brandstofcellen, denitrification, Energy, afvalwaterbehandeling, afvalwaterbehandelingsinstallaties, denitrificatie, households, Hydrogen-Ion Concentration, urine, huishoudens, ammonium, Quaternary Ammonium Compounds, energieterugwinning, waste water treatment, transport, Thermodynamics, Female, Energie, bioelectrochemical systems, performance

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    391
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
391
Top 0.1%
Top 1%
Top 1%