Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Water Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Water Research
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Enhanced fermentative hydrogen production from industrial wastewater using mixed culture bacteria incorporated with iron, nickel, and zinc-based nanoparticles

Authors: Ahmed Elreedy; Manabu Fujii; Mitsuhiko Koyama; Kiyohiko Nakasaki; Ahmed Tawfik;

Enhanced fermentative hydrogen production from industrial wastewater using mixed culture bacteria incorporated with iron, nickel, and zinc-based nanoparticles

Abstract

The present study assessed the efficiency of utilizing mixed culture bacteria (MCB) incorporated with individual nanoparticles (NPs), i.e., hematite (α-Fe2O3), nickel oxide (NiO), and zinc oxide (ZnO), dual NPs (α-Fe2O3 + NiO, α-Fe2O3 + ZnO, and NiO + ZnO), and multi-NPs (α-Fe2O3 + NiO + ZnO) for hydrogen production (HP) from industrial wastewater containing mono-ethylene glycol (MEG). When MCB was individually supplemented with α-Fe2O3 (200 mg/L), NiO (20 mg/L), and ZnO NPs (10 mg/L), HP improved significantly by 41, 30, and 29%, respectively. Further, key enzymes associated with MEG metabolism, such as alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), and hydrogenase (hyd), were rapidly and substantially enhanced in the medium. NiO and ZnO NPs notably promoted ADH and ALDH activities, respectively, while α-Fe2O3 exhibited superior impact on hyd activity. Maximum hydrogen production rate was concomitant with higher acetic acid production and lower residual acetaldehyde and ethanol. HP using MCB supplemented with individual NiO (20 mg/L) and ZnO NPs (10 mg/L) further improved by 8.0%-14% when dual and multi-NPs were used; the highest HP was recorded when multi-NPs were used. In addition, NPs incorporation resulted in substantial increase in the relative abundance of Clostridiales (belonging to family Clostridiaceae; > 83%). Overall, this study provides significant insights into the impact of NPs on hydrogen production from MEG-contaminated wastewater.

Country
Japan
Keywords

Bacteria, Iron, Metal Nanoparticles, Wastewater, 620, Zinc, Nickel, Nanoparticles, Zinc Oxide, Hydrogen

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    124
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
124
Top 1%
Top 10%
Top 1%