
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A self-sustaining synergetic microalgal-bacterial granular sludge process towards energy-efficient and environmentally sustainable municipal wastewater treatment

pmid: 32388049
Globally increasing concerns have been raised on the high energy consumption and greenhouse gas emissions in conventional municipal wastewater treatment processes over the past decades. In this study, a self-sustaining synergetic microalgal-bacterial granular sludge process was thus developed to address these challenges. The results showed that the microalgal-bacterial granular sludge process was capable of removing 92.69%, 96.84% and 87.16% of influent organics, ammonia and phosphorus under non-aeration conditions over a short time of 6 h. The effluent could meet the increasingly stringent discharge standards in many countries worldwide. A tight synergetic interrelationship effect between microalgae and bacteria in granules was essential for such excellent process performance. The stoichiometric and functional genes analyses further revealed that most of organic matter and nutrients were removed through microalgal and bacterial assimilations. Moreover, it was found that there existed a desirable distribution of functional species of microalgae and bacteria in microalgal-bacterial granules, which appeared to be essential for the self-sustaining synergetic reactions and stability of microalgal-bacterial granules. Consequently, this work may offer a promising engineering alternative with great potential to achieve energy-efficient and environmentally sustainable municipal wastewater treatment.
- Wuhan Polytechnic University China (People's Republic of)
- Advanced Biotechnology Center Italy
- Wuhan Polytechnic University China (People's Republic of)
- Advanced Biotechnology Center Italy
- Nanyang Technological University Singapore
Sewage, Phosphorus, Wastewater, Microalgae, Biomass
Sewage, Phosphorus, Wastewater, Microalgae, Biomass
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).227 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.1%
